9 research outputs found

    Reducing the impacts of electric vehicle charging on power distribution transformers

    Get PDF
    This article investigates the effects of high penetration levels of Electric Vehicle (EV) charging on power distribution transformers and proposes a new solution to minimize its negative impacts. There has been growing concern over Greenhouse Gas (GHG) emissions within the transportation sector, which accounts for about 23% of total energy-related carbon-dioxide emissions. The main solution to this problem is the electrification of vehicles. However, large scale integration of EVs into existing grid systems poses some challenges. One major challenge is the accelerated aging of expensive grid assets such as transformers. In this article, a demand response mechanism based on the thermal loading of transformers, is proposed. The proposed solution is modeled as an optimization problem, where a new time of use (ToU) tariff is used to shift the EV load considering the thermal loading of transformers, thereby minimizing their accelerated aging. The simulation results show that the accelerated aging of transformers can be reduced without augmenting the existing grid

    A graph automorphic approach for placement and sizing of charging stations in EV network considering traffic

    Get PDF
    This paper proposes a novel graph-based approach with automorphic grouping for the modelling, synthesis, and analysis of electric vehicle (EV) networks with charging stations (CSs) that considers the impacts of traffic. The EV charge demands are modeled by a graph where nodes are positioned at potential locations for CSs, and edges represent traffic flow between the nodes. A synchronization protocol is assumed for the network where the system states correspond to the waiting time at each node. These models are then utilized for the placement and sizing of CSs in order to limit vehicle waiting times at all stations below a desirable threshold level. The main idea is to reformulate the CS placement and sizing problems in a control framework. Moreover, a strategy for the deployment of portable charging stations (PCSs) in selected areas is introduced to further improve the quality of solutions by reducing the overshooting of waiting times during peak traffic hours. Further, the inherent symmetry of the graph, described by graph automorphisms, are leveraged to investigate the number and positions of CSs. Detailed simulations are performed for the EV network of Perth Metropolitan in Western Australia to verify the effectiveness of the proposed approach

    Forecasting plug-in electric vehicles load profile using artificial neural networks

    No full text
    Plug-in electric vehicles (PEVs) are becoming very popular these days and consequently, their load management will be a challenging issue for the network operators in the future. This paper proposes an artificial intelligence approach based on neural networks to forecast daily load profile of individual and fleets of randomly plugged-in PEVs, as well as the upstream distribution transformer loading. An artificial neural network (ANN) model will be developed to forecast daily arrival time (Ta) and daily travel distance (Dtr) of individual PEV using historical data collected for each vehicle in the past two years. The predicted parameters are then will be used to forecast transformer loading with PEV charging activities. The results of this paper will be very beneficial to coordination and charge/discharge management of PEVs as well as demand load management, network planning and operation proposes. Detailed simulations are presented to investigate the feasibility and accuracy of the proposed forecasting strategy

    A coordinated dynamic pricing model for electric vehicle charging stations

    No full text
    The charging loads of plug-in electric vehicles (PEVs) within a network of charging stations (CSs) are not uniformly distributed. The load distribution is skewed toward the stations located in the hotspot areas, instigating longer queues and waiting times, particularly during afternoon peak traffic hours. This can lead to a major challenge for the utilities in the form of an extended PEV load period, which could overlap with the residential evening peak load hours, increase peak demand, and cause serious issues, such as network instability and power outages. This paper presents a new coordinated dynamic pricing model to reduce the overlaps between residential and CS loads by inspiring the temporal PEV load shifting during evening peak load hours. The new idea is to dynamically adjust the price incentives to drift PEVs toward less popular/underutilized CSs. We formulate a constraint optimization problem and introduce a heuristic solution to minimize the overlap between the PEV and residential peak load periods. Our extensive simulation results indicate that the proposed model significantly reduces the overlap and the PEV load during evening peak hours. Š 2018 IEEE

    An optimal charging solution for commercial electric vehicles

    No full text
    New government regulations and incentives promote the deployment of commercial electric vehicles to reduce carbon emissions from gasoline-fueled vehicles. For commercial electric vehicles (CEVs) operating in a fleet, charging processes are often performed at the depot where they begin and end their daily driving cycles, as well as at public stations on their routes. With the large penetration of CEVs in depots, simultaneous charging increases peak demand, which in turn impacts the electric network and increases the demand cost of a facility. These depot charging conditions influence the charging schedules of CEVs along their routes and the total service cost of logistic companies. This paper investigates optimal charging problems for CEVs that are supported by charging stations at depot and on-route public charging stations. The optimal charging and routing problems of CEVs are modelled as an optimization problem and relevant solutions are provided. The charging variants considered in the optimization model are peak demand of depot charging, time of use tariffs during the day, partial recharging, waiting times and characteristics of public stations. The results indicate the effectiveness of the developed algorithm in achieving optimal routes that maximize the benefits of logistics companies provided all constraints are satisfied

    Optimal allocation of distributed energy storage systems to improve performance and power quality of distribution networks

    Get PDF
    The placement of grid-scale energy storage systems (ESSs) can have a significant impact on the level of performance improvements of distribution networks. This paper proposes a strategy for optimal allocation of distributed ESSs in distribution networks to simultaneously minimize voltage deviation, flickers, power losses, and line loading. The optimal ESS allocation is investigated through the PQ injection (considering a variable power factor on the dispatch of ESSs) and the results are compared in terms of performance and power quality improvements. An IEEE-33 bus distribution system (medium voltage), having a high influence of renewable (wind and solar) distributed generation, is used as the test network. The overall investigation is conducted for two distinct scenarios: (1) applying a uniform ESS size and (2) applying non-uniform ESS sizes. DIgSILENT PowerFactory is used for developing, analyzing, and testing the system models. The fitness-scaled chaotic artificial bee colony optimization algorithm (a hybrid meta-heuristic technique) is applied to optimize parameters of the objective function. A Python script is used to automate simulation events in PowerFactory. The optimization results are verified through the application of the conventional artificial bee colony algorithm. Detailed simulation results imply that the proposed ESS allocation technique can successfully minimize voltage deviation, flicker disturbance, line loading, and power losses, and thereby significantly improve performance and power quality of a distribution network

    A decision support algorithm for assessing the engagement of a demand response program in the industrial sector of the smart grid

    Get PDF
    In the industrial sector of the smart grid (SG), a demand response program (DRP) is offered to consumers to motivate them to shift their demand for electricity to the off-peak period. DRP can cause a dilemma for industrial consumers when energy load is decreased since it may disrupt the production process and they may consequently incur losses. Hence, industrial units may choose to accept or reject a DRP. If they choose to engage in a DRP, they may use the available back-up on-site energy resources to access the required amount of energy. Hence, any decision about load curtailment requires a comprehensive assessment of all layers of production and operational management. This paper utilises several methodologies to evaluate the effects of DRP engagement on operational management. Firstly, the Delphi method is employed for extracting and identifying twenty-six criteria embedded in ten operational and production management factors. Secondly, based on these criteria, the production equipment is ranked using the TOPSIS method. This ranking shows which equipment will have less impact on the organisation's profit as a result of participating in a DRP; but, it will not support production and energy planning which is affected by DRP engagement. So, thirdly, a linear programming (LP) model in a discrete scheduling time horizon is proposed which considers the TOPSIS method output and all the constraints imposed by the DRP and the production resources. Finally, based on the proposed methodology, a decision-making algorithm is designed to assist the operation and energy managers to decide whether to accept or reject the offer to engage in a DRP and if they decide to participate, how to best utilize the available distributed energy resources to regain the energy lost. The main contribution of this paper is the proposed methodology which combines the outcome of the Delphi and TOPSIS methods with a linear optimisation model, the effectiveness of which is clearly demonstrated by the sensitivity analysis
    corecore